Development - .NET

Aptean Ltd
Copyright © 2011-2026.

Development - .NET

Contents
YT o] o) a1 o L A AN PP TR T PPPPP 1
1.1 .NET DeVvelopment ENVIFONMENL... ..o e s ee e e et s et e e e e e e e e aeaeaaaaaeas 1
1.2 NET Programming GUIAE........ccocieiiiiei oo ettt s e s e e e e e e e e e e e e e e e e e eeee e e eeeseastats e s e e e e e e aeaaaeaaeaaees 1

Development - .NET

1 Development - .NET

1.1 .NET Development Environment

1.1.1 Development Tools List

* Visual Studio 2010

* Visual Studio 2008 - WM 6.5 PDA only
* NotePad++

* SQL Server Managment Studio

* SQL Server Express 2008

* SQL Server Compact

» Windows Mobile 6 SDK

» Windows Mobile 6.5 SDK

» SOAPUI

* ActiveSync/Windows Mobile Device Center
* Visual Source Safe

o lIS

1.2 .NET Programming Guide

1.2.1 Database

The database is currently exclusive deployed on MS SQL Server and is support from 2005 upwards. Due to the nature of
the Data Access Layers implementation, the system is to some extent database agnostic, and that simply rewriting the
database table and packages to support another database should be all that is required to port over to MySQL or Oracle.

The database consists of a series of tables that are required to hold the needed data for the ePOD product. This data is
manipulated through stored procedures which can be call from the data access layer.

Each table generally has four stored procedures:

* TABLE_NAME_INSERT

« TABLE_NAME_UPDATE

« TABLE_NAME_SELECT

« TABLE_NAME_DELETE
There may also be the following stored procedures:

« TABLE_NAME_GET_MAXID

« TABLE_NAME_CANCEL

« TABLE_NAME_SEARCH

e TABLE_NAME_SELECT _UPDATED_DATA - Not currently used due to improvements needed in the PDA Client

and the Webservices

1.2.1.1 Tables

« EPOD_DEVICE_TYPE
Holds a list of models of devices that have logged on to the calidus_epod.asmx webservice and configuration flags such
as barcode scanning and camera capture capabilities. The intention is to use this data to restrict functionality on devices
where there may be a issue using the functionality, for example no camera on the device.

« EPOD_CONTAINER

Holds container level information this is linked through primary key to the job record. Container 0000000000 is always the
loose product container.

« EPOD_CUSTOMER
Holds customer level information.

- EPOD_JOB_ADDRESS

L Ready for What’s Next, Now™

Development - .NET

Holds address and contact information similar to a customer record but is used in the scenario of a different delivery
location being provided for the customer.

« EPOD_JOB

Holds Job information such as type, customer, and times.
« EPOD_LOAD

Holds load level information, representing a drivers workload (a set of jobs).
« EPOD_DEVICE

Holds device specific identification details such as Unique ID, Type, OS and the last User. This is updated with every
relevant communications message from the PDA.

« EPOD_JOB_GROUPS

Holds the configuration details for a job group
« EPOD_LOTS_STATUS

This table is not currently used, but was part of the initial design for LOTS integration.
« EPOD_PRODUCT

Holds product level information associated to the Container and Job.
« EPOD_PHOTO

Holds photo information against job, container and products, this is held as a base64 encoded jpg file.
« EPOD_REASON_CODE

Holds the static reason code information.
* EPOD_USER_AUDIT

Holds a audit of all communications between the PDA and the server, identifying the type of communication and the GPS
location.

« EPOD_SERVICE_ACTIVITY_MASTER

Holds the static activity data.
« EPOD_SERVICE

Holds the service job information, this will be linked to a job record.
» EPOD_SERVICE_PRODUCT

This table holds all products used as part of a service.
« EPOD_SERVICE_PRODUCT_MASTER

This table holds static product information.
« EPOD_SERVICE_VEHICLE_PRODUCT

This table holds a list of service products that are held in each vehicle.
« EPOD_SITE

This table is at the top of the hierarchy, allowing multiple sites to be hosted on the same database. This holds high level
configuration.

5 Ready for What’s Next, Now™

Development - .NET
* EPOD_USER_ACCESS_GROUPS

This table holds the association between users and jobs groups allow users to view jobs of a particular group within the
system.

« EPOD_USER

This table contains the users details.
« EPOD_VEHICLE_CHECK

This table holds the raw XML returned from vehicle checks performed on the device.
* EPOD_VEHICLE

The vehicles within the system are held here.
« EPOD_XF_AUDIT_HEADER

This table contains all the export audit information.
« EPOD_XF_AUDIT_DETAIL

This table has not been implemented within the system, and will be used if the Audits need expanding.
« EPOD_XF_CONFIG

This holds the configuration for the system exports.

1.2.2 Data Access Layer

The data access layer (EPOD Server project) provides a series of classes for interacting with the database. These
classes are mapped out as the following #regions:

» Class

Private Members
Public Members
Public Constructor
Private Constructor
Public Methods
Private Methods
Public Static Methods

LR 2 2 2R 2R 2 2

1.2.2.1 Private and Public Members

The private members represent columns within the data rows. These are all C# data types. This should not be
manipulated manually and should be accessed via the public members which provide Get and Set methods to access
them, implying various rules, for example maximum length.

1.2.2.2 Public Constructor

This is used to create a instance of the object. Calling this with the relevant parameters (those making up the primary key)
will cause the object to call the TABLE_NAME_SELECT method and load the first record returned into the public
members. If the object has been found then the DBEXxists property will be set to true.

1.2.2.3 Private Constructor

This is used to construct the object internally within the object without calling the database. This will simply take all of the
properties as parameters and will set-up the object as with the public constructor. This is used when returning a

<TABLE_NAME>List of objects, and will be called multiple times rather than repeating calls to the database. This can
only be and should only every called in the scenario where your query will return multiple records.

3 Ready for What’s Next, Now™

Development - .NET
1.2.2.4 Public Methods

These methods typically consist of the following:

» Update() - Commits the current private members to the database using TABLE_NAME_INSERT or
TABLE_NAME_UPDATE dependant on the DBEXists property.

 Cancel() - Sets the object to cancelled status, either through setting the properties manually and calling update or
calling a TABLE_NAME_CANCEL stored procedure.

* Delete() - Calls the TABLE_NAME_DELETE stored procedure deleting the object from the database.

» Complete() - Sets the object to complete

» ToXElement() - Returns a XElement object containing all private members in XML form.

» ToXElementMin() - Returns a reduced set of the above, not including any hierarchy.

1.2.2.5 Private Methods
This region contains methods internal to the objects. This will typically contain:

» GetParmeters() - Adds all the private members to the parameters in the DbCommand object to be passed to the
store procedure.

» GetParametersForSelect() - Adds all the database fields as null parameters to the DbCommand object.

» SetNewld() - Used in the constructor methods to set a new id for the object if one is not provided.

1.2.2.6 Public Static Methods

These methods provide access to the search functionality of the system. Typically you will provide a series of parameters,
which will be passed to the TABLE_ NAME_SELECT or TABLE_ NAME_SEARCH. The method will then call the private
constructor of the object for each row found and store the objects in a <TABLE_NAME>List which is returned. This are
structured in the same way as the constructor but will use a loop to populate a list rather than simply using the first row
found.

1.2.3 WebServices

All communications with ePOD are currently done via WebServices supporting both SOAP and Restful. ePOD uses XML
as it's communications medium.

1.2.3.1 Message Process

The message process C# class within the ePOD_Server project handles all communications from the PDA. This is called
from the Calidus_epod.asmx code behind when a request is received. All messages are passed in as a XElement object.
As all messages from the PDA are passed to a single end-point, the MessageProcess must evaluate how to process this
based on the root tags of the XElement object. All responses from the Message Process are given a RESULT attribute,
container ACK for success and NAK for failure. All messages processed have a record written to the
EPOD_USER_AUDIT table.

1.2.3.1.1 ProcessEPODMessage

The ProcessEPODMessage method is the method that is called by the Calidus_ePOD.asmx code behind. The contents
of the Soap request from the PDA are passed to this method as a XElement object. This method initially validates the
EPOD_SITE and EPOD_USER exist and the password sent with the message are correct, if not the error is returned as a
NAK XML to the Calidus_ePOD.asmx. If validation is successful this will be passed to the relevant method for processing
and the results returned to Calidus_epod.asmx.

If the device type is android the EPOD_DEVICE record is inserted or updated, if inserted and a EPOD_DEVICE_TYPE
record does not exists this is inserted as well.

1.2.3.1.2 ProcessLogonRequest

This method will process all logon requests. The devices last data update date and time are send with the login request,
this is used to retrieve standing data from, EPOD_SITE,EPOD_JOB_GROUPS, EPOD_REASON_CODE,
EPOD_SERVICE_ACTIVITY_MASTER, EPOD_SERVICE_PRODUCT_MASTER and EPOD_USER, where the data has
been updated since this time. Version numbers are also sent across with login request from the PDA, these are passed to
ProcessUpdateRequest().

4 Ready for What’s Next, Now™

Development - .NET

1.2.3.1.3 ProcessUpdateRequest

These version numbers are compared to the version numbers stored within the PDA_Updates folder. If the version on the
server are greater then the updated version numbers are returned with the URL to access the updates as part of the
response message.

1.2.3.1.4 ProcessLoadRequest

It will retrieve the first available load for the user of the user id passed to it and will return this as XML. It will filter out any
jobs at completed or cancelled status. During the retrieval process the load will be set to inprogress status.

1.2.3.1.5 ProcessJobLockRequest

This message is processed by validating the desired job is still available to the current user, if not a delete message is
returned. If the job is available the job is checked for updates and any are then sent to the device. The job is set to In
Progress on the server at this point, and all other In Progress jobs on the drivers load are set back to pending.

1.2.3.1.6 ProcessAutoUpdateRequest
This message is responsible for checking that a users current load is up to date. The message sent from the device will
contain the current load the user is working on and a last changed date for this load. When received there are the
following scenarios:
» The load has been removed or all jobs completed and cancelled
The method will return a message to the device advising that the load has been removed.
» The load is in the same state as when found.
The unique keys of each record at load, job, container and product are returned as XML.
» The load has been updated
The full XML for the load is returned.

» A Job, Container and Product has been updated

The updated record is return in full as XML.

1.2.3.1.7 ProcessVehicleCheck

This function processes completed vehicle check data from the PDA. This method will write the vehicle check record to
the database and return a ACK if successful.

1.2.3.1.8 ProcessJobUpdate

This function processes any complete or cancellation messages sent at the point of job completion or cancellation. This
will process the generic job data followed by the container and product or service data. Finally if this is the last job still at
pending or in progress status it will complete the load record, it is worth noting that a separate message 'Load Update’ is
sent to update this from the PDA as well.

1.2.3.1.9 ProcessPhotoRequest

This method will process photo uploads from the PDA's.

This photo upload allow for message chucks. Multiple messages are sent each containing a chunk of the image. For the
first chunk received, a photo record is written and associated to the corresponding record as with the previous message
except for each missing chunk of the picture a XML <CHUNKX> tag is written into the EPL_PHOTO field in sequence. As
each other chunk is received, the photo record is recalled via its corresponding job, container or product record and the
<CHUNKX> tag replaced with the image chunk.

Both messages return a ACK or NAK based on success or fail.

. Ready for What’s Next, Now™

Development - .NET

1.2.3.1.10 ProcessLoadUpdateRequest

This message is processed updating the load record with the final metrics of a drivers workload. This typically will not
complete the load only update the record.

1.2.3.1.11 ProcessGPSStatusRequest

This message is currently only Android. This message writes data to the user audit table with a GPS stamp of the current
location.

1.2.3.2 EPOD_DATA_SERVICE
The EPOD_DATA_SERVICE C# class handles importing of data.
The import as within the MS Excel imports are a one error fail all system.

This class has one publicly exposed function, ProcessXMLImport(EPOD_DBCONNECTION,XDocument). This function
will process the XDocument received by:

* Validating the XML against the XMLUpload.xsd file.
* Importing all loads and their hierarchy.

 Importing all jobs and their hierarchy.

 Importing all customers.

 Importing all service product master records.

* Importing all vehicles.

* Importing all users.

* Importing all reason codes.

This is done through recursively calling the internal private functions.
There are two main variables that can be accessed externally:

» DataSet ErrorList
» DataSet CompleteList

These variables are populated with any success or error messages. If the ErrorList has any data in it the import will not
have been committed.

1.2.4 Web Application (Admin)

W Warning: Section Incomplete

1.2.4.1 POD Report Development

« All new reports should be created by using existing pagination code - this should be centralised and reusable
where possible.

+ To simplify development, existing reports that already use the pagination code should be copied.

* Pagination allows for a string definition of just the following 3 sections: Header, Details and Footer. ¥ Note: This
may be extended in time to Initial and Final headers, plus Page Header and Footers.

 The call of the Pagination object (ReportPager) allows for the configuration of each section (for example, whether
a particular section should be displayed, whether to reserve space for it, etc) - see this code and extensive
examples for details of how this works and how to extend this for your report, if necessary.

* A prototype is always created in plain text - use this to copy in the header, detail and footer sections, escaping
special characters as required. Also use this to source the correct CSS.

» Each section is defined in the C#.NET file (i.e. the "aspx.cs" file) rather than defined as objects in the asp.NET file
(i.e. the ".aspx" file), modifying the copied populateReport method and any called methods, such as
generateContent, generateHeader, generateFooter. These will be built by copying the provided prototype HTML
code replacing data from the records found, escaping special characters as required. Note that data may be
retrieved from globally- or locally-declared DAL objects within the report, if this is required.

* All other methods in the C#.NET file should be common to all POD reports, as follows:

¢ private int ValidateUser()
+ public void Page_Error(object sender, EventArgs e)
+ protected void Page_Load(object sender, EventArgs e)

6 Ready for What’s Next, Now™

Development - .NET

+ protected override void Render(HtmITextWriter writer)
+ protected override void OnUnload(EventArgs e)
+ protected void emailBT_clicked(object sender, EventArgs e)
¢ private string convertJobType(String EPL_JOB_TYPE)
¢ public static int roundup(int i)
» The asp.NET file contains only:
+ The required CSS code for this format, sourced mainly from the prototype rather than the copied source
code.
¢ The "Email" div
¢ A general "POD" div.
* When complete:
¢ Check against the prototype - pay particular attention to line breaks (both forced by the HTML BR tag and
those automatically placed into data and labels by size restrictions.
+ Check the final PDF result by converting the produced page to PDF using the conversion tool.
+ It should not then be necessary to check on multiple browsers, as the prototype has already been tested
against all major browsers and likely versions, such as:
O Firefox (latest)
¢ Chrome (latest)
¢ Internet Explorer 11
¢ Internet Explorer 6-10 (through emulation)
¢ Safari (through PDF conversion)

When creating a report following these instructions, the produced report should match the prototype completely, and
therefore there is less chance of a customer being unhappy upon delivery, having received a report that does not match
the specification and prototype that they agreed before development commenced.

1.2.4.2 Multi-Lingual

W Warning: Section Incomplete

1.2.5 ePOD Manager

The ePOD manager application is still in alpha phases. The application provides the following administrative functions
through a GUI or through command prompt:

» DeleteData

This will delete all dynamic (load, job, container, product and photo) data from the database within a particular number of
days previous to today.

* DeletelmageData

This will delete all photo data from the database within a particular number of days previous to today.
* DeleteVehicleCheckData

This will delete all vehicle check data from the database within a particular number of days previous to today.
* DeleteXFAuditLogs

This will delete all Export Audit data from the database within a particular number of days previous to today.
» TrimDataBase

This will trim all data within the database.
* ShrinkDataBase

This will shrink and reclaim any space unused in the database.
* RebuildindexDataBase

This will rebuild all indexes on the database.

. Ready for What’s Next, Now™

Development - .NET

 DeleteManagerLogs
This will delete all logs generated by the ePOD manager application.
» DeleteePODLogs

This will delete all logs generated by the ePOD system.

1.2.6 ePOD AutoExport

The ePOD AutoExport program is set up as a scheduled service to run every X minutes on the host machine. This
process will perform two tasks:

1.2.6.1 Export

This process will retrieve all records (Job and Load) in the database with the EPL_XFER_FLAG set to N. Once retrieved
the process will select their associated Job Group configuration for export and if it exists it will export them through the
given method, either SOAP, POST or email. As with all other exports and imports in ePOD XML is the medium used and
this is generated through the standard toXElement() methods in each DAL object.

1.2.6.2 POD Email

The POD Email functionality in the ePOD AutoExport procedure works similarly to the Export functionality. A stored
procedure is ran to collate all jobs that have the EPL_EMAIL_FLAG set to Y. Each job is then evaluated (not this
evaluation should be migrated to the Store Procedure as will likely be faster), is the customer has a email address and the
job group allows for auto emails then the POD will be generated and sent by email. To generate the POD, first the
configured report is called locally from the server through a http request using a local cookie for authentication. The HTML
is the retrieved this is either sent via email to the customer or is stored on disk and requested by WkHtmltoPdf to generate
a PDF which can then be sent via email.

1.2.7 PDA Client

ePOD system current has two PDA clients Windows Mobile and Android. These both have local databases and
communicate to the centralised server using the pre-specified web services.

1.2.7.1 Process Flow
1.2.7.1.1 Login

Application Start
PreStart Checks
IF first login
IF Config XML file exists
Send Grace Login Request
ELSE
Open Config Form
ELSE
Load User Data (DBConnection.cs and Program.cs)
Open Login Form

1.2.7.1.2 Job List

Open Job List
IF Check for load with uncompleted (Status | & P) jobs on local DB == TRUE
Prompt user to refresh data
IF Refresh data
Send Load Request
BIND GET * JOB DATA to Job List
START Pending Timer
START Auto-Update Timer
AUTO-UPDATE timer fires
Send Load update request
If Updates
BIND Updates to Job List
IF User Selects Job
Open Job Detail
On Close

8 Ready for What’s Next, Now™

Development - .NET

IF Check for load with uncompleted (Status | & P) jobs on local DB == FALSE
PROMPT for more work
SEND Load Request or Exit
ELSE
BIND GET * JOB DATA to Job List

W Warning: Section incomplete
1.2.7.2 GUI

Both device work on the principles of a card stack. Each form or window will open another and on exiting of a window will
refresh the data it is currently displaying showing any modifications. (You need to beware that this means you are holding
the previous window open in memory and on some** devices this is limited). Each Form or Window will run some set-up
either both loading or at the point of loading which will set up any user or background controls, as well as getting any data
from resources it may need. Once at this point all interaction is user driven (other than separate timed processes).

1.2.7.3 Communications

All communications with the central server are performed via SOAP requests using XML. There are two types of request
that occur from the devices:

» Send and Wait
These are messages that must be recieved and processed before a action can occur.

For example the logon process:
User enters user and password
User clicked Logon
Send Logon Request

If Response

Process Updates

Process Data

Local Logon

Else

Local Logon

In reality the user can always work without sending these messages due to the local database, but they may not be
working with the most recent data if they do/cannot.

» Send and Forget (Send Pending Data)

This uses the same mechanism as Send and Wait. A timed process is started on the device that reads data from the
Pending data table in the local database (this will contain XML written to it for job updates ect), if a records is found then it
will send the data to the server and await a response. Once receieved the data will then be removed from the local
database and the next record sent. To conserve battery (timers are a expensive resource) the timers are only started
when data is written to or existing in the table, once all data is sent they are shutdown until the next record is written.

1.2.7.3.1 Android

Android uses a modified suds.js (Suds2.js) client (https://github.com/kwhinnery/Suds). This is a javascript implementation
of SOAP. This has been modified in the invoke method to handle our webservices.

1.2.7.3.2 WM6.5

The WM6.5 client uses the standard build in soap calls to VS2008. This allows you to add the service as a webmethod
within the project and reference it as a standard method.

1.2.7.4 Photos

The photos function on both phone utilising the native camera application, the image from this is then compressed to a
.JPEG image, converted to base64 and stored within the database in this format. From the database they can then be
transmitted to the server.

The client post version 1.31.1.0 will now attempt to split images over 50kb into chunks to send back to the server. Upon
job completion and cancellation, the job object is passed to the process photos function which will recursively check the
job hierarchy for photos. If any photos are present they are loaded into a photo object and the data of the photo is split
into chunks and each chunk written to a photo request message.

9 Ready for What’s Next, Now™

Development - .NET
1.2.7.5 Multi-Lingual
@ Warning: Section Incomplete
1.2.8 Variable Notation
@ Warning: Section Incomplete
1.2.9 Source Control
@ Warning: Section Incomplete
1.2.10 Commenting Code
@ Warning: Section Incomplete
1.2.11 Developer Testing and Debugging
@ Warning: Section Incomplete
1.2.12 Other

@ Warning: Section Incomplete

10 Ready for What’s Next, Now™

	Contents
	1 Development - .NET
	1.1 .NET Development Environment
	1.2 .NET Programming Guide

