
Oracle ORDS Technical Guide
Aptean Ltd

Copyright © 2011-2026.



Contents
1 Oracle  ORDS Technical  Guide.........................................................................................................................................1

1.1 Pre-requirements.................................................................................................................................................1
1.2 Overview of Affected Tables...............................................................................................................................1
1.3 Setting Up............................................................................................................................................................1
1.4 Examples.............................................................................................................................................................2
1.5 Basic Queries......................................................................................................................................................4

Oracle ORDS Technical Guide

i



1 Oracle ORDS Technical Guide
This is a technical guide for the setup of Oracle ORDS, used for OAUTH2 webservices through Oracle Fusion
Middleware.

 Note: The majority of the ORDS schema creation is through a WAR file that is installed when the process is initialized.

The initial build consists of a java unzip, and then using the WAR file to create schemas / deploy objects to the database
(logged in as sys) - this WAR file is also the ?ORDS java? side and a minor amount of config.

This guide is intended to be a small introduction to the technical tables and requirements, for support purposes.

1.1 Pre-requirements

PL/SQL Developer.• 
TNS Name for the Oracle database.• 

1.1.1 Users

ords• 
ordsimport• 
mts_owner• 

1.2 Overview of Affected Tables

1.2.1 Settings for users when editing ORDS

   select * from user_ords_roles;
   select * from user_ords_privileges;
   select * from user_ords_privilege_roles;
   select * from user_ords_privilege_mappings;

1.2.2 Creation

The actual web services

   select * from user_ords_modules;
   select * from user_ords_services;
   select * from user_ords_handlers;
   select * from user_ords_templates;
   select * from user_ords_schemas;

   select * from user_ords_parameters;

1.2.3 Execution

   select * from v$session where type = 'USER'
   select * from user_ords_clients;
   select * from user_ords_client_privileges;
   select * from user_ords_client_roles;

1.3 Setting Up

As mts_owner:

   create user ords identified by {password} default tablespace data temporary tablespace temp profile default;
   grant ords_administrator_role to ords;
   grant ords_runtime_role to ords;
   grant create session to ords;
   grant select any table to ords;

   create user ordsimport identified by {password} default tablespace data temporary tablespace temp;

   grant create session to ordsimport;
   grant ords_runtime_role to ordsimport;
   grant select any table to ordsimport;

Oracle ORDS Technical Guide

1



   grant execute on mts_owner.dp_ctms_import to ordsimport;

 Note: The grant of execute on the package must be the package that the ORDS handler is going to execute within the
MTS_OWNER space. If this is different (or there are several), then this must be changed and added to here.

as ords:

   begin
     ords_metadata.ords.enable_schema(
       p_schema              => 'ordsimport',
       p_url_mapping_type    => 'BASE_PATH',
       p_url_mapping_pattern => 'import'
     );

     commit;
   end;
   /

   declare
     l_roles_arr    owa.vc_arr;
     l_patterns_arr owa.vc_arr;
   begin
     l_roles_arr(1)    := 'ordsimport_role';
     l_patterns_arr(1) := 'ordsimport_pattern/';

     ords_metadata.ords.define_privilege (
       p_privilege_name => 'ordsimport_priv',
       p_roles          => l_roles_arr,
       p_patterns       => l_patterns_arr,
       p_label          => 'test priviledge',
       p_description    => null
     );

     commit;
   end;
   /

   select * from user_ords_privileges;
   select * from user_ords_privilege_roles;
   select * from user_ords_privilege_mappings

   begin
     ords_metadata.oauth.create_client(
       p_name            => 'ordsimport_client',
       p_grant_type      => 'client_credentials',
       p_support_email   => 'noreply@email.com',
       p_privilege_names => 'ordsimport_priv'
     );

     commit;
   end;
   /

   select * from user_ords_clients;
   select * from user_ords_client_privileges;

   begin
     ords_metadata.oauth.grant_client_role(
       p_client_name => 'ordsimport_client',
       p_role_name   => 'ordsimport_role'
     );
     commit;
   end;
   /

   select * from user_ords_client_roles;

1.4 Examples

Example Order Create - example uses XML - REST, XML-based order create method/service.

   BEGIN
     ORDS.define_module(
       p_module_name    => 'rest-xml-import-order-create',

Oracle ORDS Technical Guide

2



       p_base_path      => 'order',
       p_items_per_page => 0);

     ORDS.define_template(
      p_module_name    => 'rest-xml-import-order-create',
      p_pattern        => 'create/');

     ORDS.define_handler(
       p_module_name    => 'rest-xml-import-order-create',
       p_pattern        => 'create/',
       p_method         => 'POST',
       p_source_type    => ORDS.source_type_plsql,
       p_source         =>
   q'[ 
       declare
           l_response xmltype;

     CHUNK_SIZE constant pls_integer := 8192;
     vOffset  pls_integer := 1;
     DOC1     clob;
     vChunk   varchar2(CHUNK_SIZE CHAR);

       begin

           l_response := mts_owner.dp_ctms_import.import_order(ctms_ord => XMLTYPE.createXML(:body_text));
           owa_util.mime_header ('application/xml', true);

   DOC1 := XMLTYPE.getClobVal(l_response);
     loop    
       vChunk := substr (DOC1, vOffset, CHUNK_SIZE);
       exit when vChunk is null;
       htp.prn(vChunk);
       vOffset := vOffset + length(vChunk);  
     end loop;

        end;
       ]',
       p_items_per_page => 0);

     COMMIT;
   END;
   /

Example handler for LogiNext interface - REST, JSON-based order update method/service.

   BEGIN
     ORDS.define_module(
       p_module_name    => 'rest-json-import-order-update',
       p_base_path      => 'order',
       p_items_per_page => 0);

     ORDS.define_template(
      p_module_name    => 'rest-json-import-order-update',
      p_pattern        => 'update/');

     ORDS.define_handler(
       p_module_name    => 'rest-json-import-order-update',
       p_pattern        => 'update/',
       p_method         => 'POST',
       p_source_type    => ORDS.source_type_plsql,
       p_source         =>
   q'[ 
       declare
           l_response json_object_t := json_object_t();

     CHUNK_SIZE constant pls_integer := 8192;
     vOffset  pls_integer := 1;
     vData     clob := EMPTY_CLOB();
     vChunk   varchar2(CHUNK_SIZE CHAR);

   begin

   l_response := mts_owner.dp_loginext.process_inbound(i_message =>  json_object_t.parse(:body));

   owa_util.mime_header ('application/json', true);

   vData := l_response.to_clob;

Oracle ORDS Technical Guide

3



     loop
       vChunk := substr (vData, vOffset, CHUNK_SIZE);
       exit when vChunk is null;
       htp.prn(vChunk);
       vOffset := vOffset + length(vChunk);
     end loop;

   exception when others then

   l_response :=  JSON_OBJECT_T.parse('{"status":"exception","sqlcode":"'||sqlcode||'","sqlerrm":"'||sqlerrm||'"}');
   htp.p(l_response.stringify);

   end;
       ]',
       p_items_per_page => 0);

     COMMIT;
   END;
   /

1.5 Basic Queries
   select * from user_ords_handlers
   where UPPER(source) like '%DP_LOGINEXT%'

Oracle ORDS Technical Guide

4


	Contents
	1 Oracle ORDS Technical Guide
	1.1 Pre-requirements
	1.2 Overview of Affected Tables
	1.3 Setting Up
	1.4 Examples
	1.5 Basic Queries


